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Objectives: To review the neurocritical care aspects of patients 
supported by extracorporeal membrane oxygenation, including 
cerebral physiology, neurologic monitoring, use of sedatives and 
anti-seizure medications, and prevalence and management of ex-
tracorporeal membrane oxygenation associated brain injury.
Data Sources: PubMed database search using relevant search 
terms related to neurologic complications, neurocritical care man-
agement, and brain injury management in patients with extracor-
poreal membrane oxygenation.
Study Selection: Articles included original investigations, review 
articles, consensus statements and guidelines.
Data Extraction:  A detailed review of publications performed and 
relevant publications were summarized.
Data Synthesis: We found no practice guidelines or management 
strategies for the neurocritical care of extracorporeal membrane 
oxygenation patients. Such patients are at high risk for hypoxic-
ischemic brain injury, intracranial hemorrhage, cerebral edema, 
and brain death. Improving clinical outcomes will depend on better 
defining the neurologic complications and underlying pathophys-
iology that are specific to extracorporeal membrane oxygenation. 
Currently, insufficient understanding of the pathophysiology of neu-
rologic complications prevents us from addressing their etiologies 
with specific, targeted monitoring techniques and interventions.

Conclusions: A large knowledge gap exists in our understanding 
and treatment of extracorporeal membrane oxygenation-related 
neurologic complications. A systematic and multidisciplinary 
approach is needed to reduce the prevalence of these complica-
tions and to better manage the neurologic sequelae of extracor-
poreal membrane oxygenation in a way that will improve patient 
outcomes. (Crit Care Med 2019; 47:1773–1781)
Key Words: brain injury; extracorporeal membrane oxygenation; 
neurocritical care; neurologic monitoring

Extracorporeal membrane oxygenation (ECMO) pro-
vides temporary emergency cardiopulmonary and cir-
culatory support to patients with acute respiratory 

or cardiac failure that is refractory to all other conventional 
therapies (1). Commonly, venoarterial and venovenous ECMO 
are used for acute cardiac and respiratory failure, respectively. 
The use of ECMO has increased more than 10-fold in adults 
with profound cardiopulmonary failure or cardiac arrest over 
the last decade (2). Furthermore, the Extracorporeal Life Sup-
port Organization (ELSO) registry recently reported that sur-
vival after ECMO had increased to 58% from an abysmal rate 
20–30 years ago (3). Frequently, mortality and poor functional 
outcomes are driven by neurologic injury that results not only 
from the underlying disease process but also from complica-
tions associated with ECMO support itself (4, 5). As ECMO 
becomes more widely used and clinical experience accumu-
lates, management of ECMO-associated neurologic injuries is 
imperative.

GLOBAL BRAIN ISCHEMIA
Global ischemia occurs when cerebral blood flow or oxygen 
delivery is significantly reduced, causing hypoxic-ischemic 
brain injury (HIBI). HIBI is one of the most common compli-
cations of ECMO, present in 14–61% of patients (6–10). HIBI 
can occur during any type of ECMO support (cardiac, respira-
tory, and cardiac arrest).

Recent evidence and guidelines promote the use of extracor-
poreal cardiopulmonary resuscitation (ECPR) in patients with 
refractory cardiac arrest as a rescue therapy when the suspected 
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etiology of cardiac arrest is potentially reversible (11, 12). ECPR 
reduces the cerebral postresuscitation hypoperfusion phase, as it 
restores perfusion immediately upon initiation (13, 14). Recent 
uncontrolled studies showed that survival and neurologic out-
come (Cerebral Performance Category: 1–2) at hospital discharge 
and 3–6 months postarrest were better in adults who received 
ECPR than in those who received conventional CPR (15–19). 
Predictors of post-ECPR neurologic outcome include age, ini-
tial rhythm, low- or no-flow time (cardiac arrest-to-ECPR time), 
use of epinephrine, and inadequate tissue perfusion markers (5, 
19–21). Although neurologic outcomes after ECPR have been 
assessed in many studies by means of a neurologic outcome scor-
ing system, information on the prevalence and characteristics of 
different types of injury after ECPR is limited.

Patients who receive venoarterial ECMO for other indications 
also suffer cerebral hypoperfusion from hemodynamic instability, 
but this hypoperfusion usually occurs pre-ECMO, as ECMO can 
restore adequate end-organ perfusion, including to the brain. 
However, certain physiologic perturbations that threaten the 
brain are specific to ECMO. One example is Harlequin syndrome, 
which occurs during peripheral venoarterial ECMO cannulation 
of patients who have severe respiratory failure along with cardiac 
failure. When the left ventricle is not fully unloaded and contin-
ues to eject as it recovers its function, it will be with deoxygenated 
blood, as a result of pulmonary failure. Depending on where the 
oxygenated peripherally delivered blood (generally from the fem-
oral artery) and the hypoxic blood ejected from the heart mix, the 
cerebral blood vessels will be perfused with desaturated blood, 
potentially injuring the brain (22–24). This mismatch of upper 
torso hypoxemia and lower torso normoxia, labeled Harlequin 
Syndrome or North South Syndrome (in the United States), occurs 
in approximately 9% of patients (22, 23). HIBI was reported in 
0–35% of patients in studies of venoarterial ECMO (25–29).

HIBI in venovenous ECMO is most often caused by hy-
poxia from refractory respiratory failure. A second mechanism 
is Co

2
 dysregulation and cerebral vasoconstriction, which can 

lead to cerebral ischemia. The prevalence of HIBI in patients 
with venovenous ECMO is unclear. HIBI may be inappropri-
ately categorized as ischemic stroke (4, 30), and variations in 
neuromonitoring and neurologic diagnosis commonly lead to 
misreporting of neurologic complications (26, 31–33).

It is important to reverse hypoxia and ischemia as soon as 
possible to prevent HIBI, but the precise effect of ECMO on ce-
rebral circulation remains unclear. At present, the management 
of ECMO-associated HIBI is similar to that of any typical car-
diac arrest and includes targeted temperature management (the 
ECMO circuit can be used to control temperature); neurologic 
monitoring; and management of seizures, cerebral edema, and 
elevated intracranial pressure (ICP) (34). Advantages of ECMO, 
however, are that it allows support of cerebral circulation without 
vasopressors, or with far less vasoactive support, prevents hemo-
dynamic instability, and facilitates end-organ recovery.

ISCHEMIC STROKE
The prevalence of acute ischemic stroke (AIS) in patients sup-
ported with venoarterial ECMO is 3.5–14% (5, 25, 28, 35–42). 

The diagnosis of AIS is based on history, neurologic exami-
nation, and CT brain findings. The timing of strokes among 
patients on ECMO is frequently uncertain, as they may pre-
cede ECMO, occur during cannulation (43, 44), or result from 
a prothrombotic state with emboli from the ECMO circuit 
(45–47). Furthermore, the development of emboli will be af-
fected by the intensity of antithrombotics, arrhythmia with 
cardiogenic shock (48, 49), hemolysis (50, 51), and acute 
infection. Mechanisms for infection-related stroke include 
septic embolism, mycotic aneurysms, and inflammation-
related hypercoagulable states (52–55). The relationship be-
tween bloodstream infection and stroke in patients with a left 
ventricular assist device (LVAD), similar to ECMO, has been 
described (56–61).

The prevalence of AIS in patients with venovenous ECMO 
is less than that with venoarterial ECMO and reported to be 
approximately 2–6%, but the mechanism of stroke is poorly 
described (4, 38, 62). Possible etiologies include cerebral ve-
nous sinus thrombosis (CVST) and emboli from the circuit 
through a patent foramen ovale (PFO). Elevated right heart 
pressure can reverse the shunt (through a PFO), allowing for a 
paradoxical embolism to cause ischemic stroke. Use of the in-
ternal jugular vein as a cannulation site is certainly a risk factor 
for CVST, and this risk probably increases with a dual-lumen 
venovenous catheter.

A CT angiogram is strongly recommended to rule out hem-
orrhage and look for large vessel occlusion (LVO). IV alteplase 
is contraindicated for ECMO patients because they already 
require anticoagulation, and alteplase increases their risk of 
bleeding. Therefore, mechanical thrombectomy should be 
considered for patients with acute LVO (63). Nevertheless, be-
cause CT angiography is rarely obtained in patients on ECMO, 
the true prevalence of acute LVO during ECMO remains un-
known. It is concerning, yet informative, that 33% of patients 
with LVAD-associated AIS had an acute LVO (64). Currently, 
CT venography and echocardiography are recommended for 
patients on venovenous ECMO who have a cerebral event. 
Antiplatelet therapy may be administered regardless of the in-
farct size. The optimal timing of initiation or resumption of 
anticoagulation after AIS in patients with ECMO is unknown. 
For patients with atrial fibrillation, it is recommended that 
anticoagulant be started 4–14 days after the stroke (65, 66). 
Resumption can be earlier for those with mild ischemic stroke 
(67), but little information is available on the resumption of 
anticoagulation in patients with moderate to large AIS. For 
those on venovenous ECMO who experience a moderate to 
large stroke and are at risk for hemorrhagic transformation, 
holding anticoagulation for few days may be recommended. 
For patients on venoarterial ECMO, the risks and benefits of 
holding anticoagulation should be thoroughly discussed and 
the risk of thromboembolism and bleeding assessed daily. For 
AIS caused by CVST, anticoagulation is recommended and 
should be continued. If embolus via a PFO is the cause of 
stroke in patients with venous thromboembolism, antiplatelet 
therapy is recommended; PFO closure may be considered in 
carefully selected patients with a large shunt (68).
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Permissive hypertension is allowed in cases of AIS, but 
higher pressures may decrease myocardial recovery owing to 
increased afterload, which not only reduces stroke volume but 
increases myocardial work in situations where the heart is not 
vented and is being asked to eject. Furthermore, no guide-
line exists for optimal mean arterial blood pressure (MAP) 
(63). One study showed that survival was best when MAP was 
higher than 90 mm Hg (71%) and worst when MAP was less 
than 70 mm Hg (69). Therefore, titration of MAP within this 
range allowing patients with AIS to autoregulate seems reason-
able as long as the heart can tolerate higher pressures.

For hemispheric infarct or malignant middle cerebral artery 
infarct, the use of hyperosmolar therapy may be considered. 
However, we found no data on decompressive hemicraniec-
tomy in patients with ECMO.

CEREBRAL AIR EMBOLISM
Cerebral air embolism (CAE) is a rare but serious complica-
tion of ECMO that is associated with alveolar air trapping and 
low pulmonary venous pressure caused by decreased venous 
return in the ECMO circuit, traumatic chest compression prior 
to ECPR, air entry from vascular access, endoscopy, lung in-
jury from bag-valve-mask resuscitation, and positive-pressure 
ventilation (70–72). The common locations for CAE are suba-
rachnoid space, parenchyma, and venous sinuses. Patients may 
have acute onset of neurologic symptoms such as focal neuro-
logic deficits, coma, seizures, sudden hemodynamic instability, 
encephalopathy, and headache (73). CAE can mimic the symp-
toms of stroke, and a CT brain study should be obtained. CAE 
is managed with supportive care, including volume resuscita-
tion, oxygenation improvement, and seizure management. The 
use of hyperbaric oxygen therapy in ECMO patients has not 
been described and may not be feasible. The risk of air embo-
lisms from the oxygenator being delivered to the patient via the 
outflow from the ECMO circuit may be reduced by using an 
oxygenator that contains a venous bubble trap and prevented 
by maintaining the circuit pressure higher than the gas pres-
sure within the oxygenator (74, 75).

INTRACRANIAL HEMORRHAGE
The prevalence of intracranial hemorrhage (ICH) is similar for 
venoarterial and venovenous ECMO, with rates of 2–18% and 
4–19%, respectively (4, 5, 76–83). Types of ICH seen in patients 
on ECMO include intraparenchymal hemorrhage (IPH), suba-
rachnoid hemorrhage (SAH), and subdural hematoma (SDH). 
IPH is the most common, followed by SAH and SDH (76, 77). 
As with AIS, the timing of ICH is not well characterized. Risk 
factors for ICH include the use of anticoagulant and antiplate-
let therapy (78, 79), female sex (78, 80), thrombocytopenia (77, 
80), central cannulation (80), high transfusion requirements 
(77), a large dual-lumen venovenous cannula (81), ECMO du-
ration (82), bloodstream infections (79), renal failure, and di-
alysis (62, 78). Most of these risk factors are associated with 
multiple organ failure, coagulopathy, massive transfusions, 
and thrombocytopenia. Endothelial dysfunction with acquired 

von Willebrand Syndrome is always a possible contributor, as 
it invariably occurs with nonpulsatile continuous flow pumps 
(83). Furthermore, anticoagulation combined with antiplatelet 
therapy likely increases the risk for hemorrhagic transforma-
tion of AIS.

In practice, differentiating ischemic and hemorrhagic 
strokes requires a brain CT scan, in addition to clinical history 
and neurologic examination. CT is a sensitive tool for detect-
ing hemorrhage and should be performed in a timely manner. 
A noninvasive intracranial vascular study may be considered 
when cerebral aneurysm or arteriovenous malformation is 
suspected or to identify patients at risk for hematoma expan-
sion (84). Cerebral angiography may be considered to look for 
mycotic aneurysm or vascular malformation in patients with 
a bloodstream infection (79). When a patient who has experi-
enced a cerebral hemorrhagic event successfully separates from 
ECMO, MRI may be used to assess the etiology of the hemor-
rhage and the burden of microhemorrhage.

One of the key management strategies in ICH is to prevent 
hemorrhagic expansion by discontinuing anticoagulation, 
lowering blood pressure, utilizing seizure management, avoid-
ing hypoglycemia and fever, and providing supportive critical 
care (84). The optimal duration of anticoagulation cessation 
is unclear. Recommendations for non-ECMO patients are to 
avoid anticoagulation for at least 4 weeks, or 2 weeks when 
protection is needed for an artificial heart valve. However, 
as ECMO patients are among those with the highest risk of 
thrombosis, only a few reports show the feasibility of using 
heparin-free venovenous ECMO with a heparin-coated circuit 
(85–87). In one cohort (n = 32), venoarterial ECMO was used 
without systemic anticoagulation, and the risk of thrombo-
embolism did not increase; however, the duration of ECMO 
support was less than 2 days (88). Based on limited evidence, 
for patients on venovenous ECMO that experience ICH, with-
holding systemic anticoagulation until decannulation may be 
acceptable, but only for short periods, given that a circuit clot 
may require pump and oxygenator exchanges and stroke may 
be the first sign of failure.

No studies have investigated reversal of anticoagulation 
during ECMO. Clinicians should carefully discuss the risks and 
benefits while considering the size and expansion of ICH and 
the thrombotic risk of ECMO. The Neurocritical Care Society 
recommends an urgent reversal of anticoagulation in patients 
with ICH (89); however, the ECMO population was not con-
sidered during establishment of the guideline. In a cohort of 
405 patients with LVADs, the reversal of anticoagulation was 
deemed feasible and safe (90). However, LVADs do not include 
an oxygenator, the most thrombogenic aspect of an ECMO cir-
cuit. Reversal of anticoagulation may be considered to prevent 
hematoma expansion, but it is not without risk.

The utility of neurosurgical intervention for ECMO-
associated ICH is limited (91) and associated with a high mor-
tality rate, increased by the presence of anticoagulation, critical 
illness, and multiple organ failure (92). Despite the hazardous 
effect of ongoing anticoagulation and the thrombotic risk after 
reversal of anticoagulation, neurosurgical intervention may be 
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indicated in carefully selected patients when no other manage-
ment strategies are available and the risk-benefit profile favors 
the surgery.

POSTERIOR REVERSIBLE ENCEPHALOPATHY 
SYNDROME
Only one case report has described the occurrence of posterior 
reversible encephalopathy syndrome (PRES) in a patient with 
venoarterial ECMO (93). Venoarterial ECMO carries a high 
degree of cerebral autoregulation impairment, as assessed with 
near-infrared spectroscopy (NIRS). Even when sufficient cere-
bral blood flow was maintained by adjusting ECMO flow rates, 
impaired cerebral autoregulation was noted (94). PRES can be 
an underlying cause of both ischemic and hemorrhagic stroke 
because it results from cerebral autoregulation breakdown and 
endothelial dysfunction, both of which occur in patients re-
ceiving ECMO. Owing to the paucity of reports, there is no 
definitive management recommendation. Additional research 
is necessary to characterize ECMO-associated PRES and to de-
velop a management strategy.

CEREBRAL EDEMA AND ACUTE 
INTRACRANIAL HYPERTENSION
Cerebral edema is a severe complication of ischemic stroke and 
ICH and is associated with an elevated ICP. Although studies 
into ICP monitoring of ECMO patients should be encouraged, 
such monitoring is not essential because evidence of intracra-
nial mass effect and brain herniation can be made clinically 
from CT scans and cranial nerve examination, as shown for 
other brain injuries (95, 96). One limitation of using an inva-
sive ICP monitor is that it requires cessation of anticoagula-
tion, which has its own risks. As such, ICP monitor placement 
should be considered with temporary cessation of anticoagula-
tion to allow clinicians to adequately manage acute intracra-
nial hypertension (AIH).

A step-wise AIH management algorithm should be pursued 
to improve outcomes. When AIH is suspected, the first action 
should be to elevate the head of bed to greater than 30 degrees 
to reduce ICP (97). Reverse Trendelenburg position can be 
considered to avoid kinking of femoral-femoral venoarterial 
ECMO cannulae. Hyperventilation is a quick way to acutely 
reduce ICP. Lowering Paco

2
 to a goal of 30 mm Hg by increas-

ing sweep gas flow also can effectively lower ICP. Cerebral 
edema and AIH can be effectively managed with hyperosmolar 
therapy (98). Acute elevation of osmolarity can be achieved 
and maintained by an infusion of hypertonic saline and/or 
mannitol. The factors that increase ICP, including agitation, 
pain, seizure, and fever, should be aggressively managed and 
avoided. The use of analgesia and sedatives can be effective. 
Normothermia or mild hypothermia (easy to accomplish but 
risky because of the potential to exacerbate ever-present coagu-
lopathy) can be considered to prevent the vasodilatory effect of 
fever and its impact on ICP. Propofol and barbiturates can be 
used to reduce cerebral blood flow and cerebral metabolic rate 
of oxygen for refractory AIH. The ultimate and most effective 

therapy for AIH is decompressive craniectomy. However, the 
utility and benefit of neurosurgical intervention is unknown, 
and this radical intervention should be considered cautiously 
and used judiciously owing to the severe underlying critical ill-
ness of patients who need ECMO support.

BRAIN DEATH
There is no standardized protocol or guideline to assess brain 
death in patients receiving ECMO. An apnea test may be chal-
lenging because patients with ECMO may have hemodynamic 
instability and severe acidemia, and no guideline exists for 
choosing an ancillary test when an apnea test is deemed unsafe 
or difficult (99). A systematic review of eight studies, mostly 
case reports, concluded that an apnea test can be conducted as 
part of brain death criteria in patients on ECMO by reducing 
sweep gas flow or adding exogenous CO

2
. Electroencephalo-

grams (EEGs), cerebral angiograms, and nuclear scans are 
preferred ancillary tests in cases of hemodynamic instability 
(100). Standardized practice guidelines are needed for brain 
death determination in patients on ECMO.

SEIZURES AND ANTI-SEIZURE 
MEDICATIONS
Seizures are reported in 1–6% of ECMO patients (3–5, 39, 
101). Given that EEGs of comatose patients are not systemati-
cally monitored, anesthetics are used routinely during ECMO, 
and brain injury is common in this patient population, these 
values are likely an underestimation. Comatose patients should 
be monitored with continuous EEG to rule out nonconvulsive 
seizures.

Drug treatment in patients supported by ECMO is af-
fected by altered pharmacokinetics and pharmacodynamics 
(102). ECMO circuits can sequester drugs, thereby increasing 
the volume of distribution, but the circuit saturates over time 
(103). After treatment is discontinued, the circuit may con-
tinue to release sequestered drug, resulting in unpredictable 
effects (102). Lipophilic and highly protein-bound drugs such 
as propofol and midazolam are particularly susceptible to such 
alterations (104). Other lipophilic anti-seizure medications in-
clude carbamazepine, tiagabine, felbamate, and phenobarbital. 
Conversely, an initial increase in volume of distribution at the 
start of ECMO priming solutions such as plasma or saline can 
affect hydrophilic anti-seizure medications such as gabapentin, 
leading to subtherapeutic concentrations and potential thera-
peutic failure (105).

Data are limited on anti-seizure medication dosing for 
patients with ECMO. When possible, therapeutic drug moni-
toring should be performed, but medications should also be 
titrated to seizure suppression. Because of the aforementioned 
sequestration, it is important to increase maintenance doses of 
highly lipophilic or highly protein-bound medications such as 
propofol and midazolam (102, 104). In one study, only 13% 
of baseline midazolam was detected 24 hours after initiation 
of ECMO (106). Alternatively, hydrophilic anti-seizure medi-
cations may require a higher loading dose (106). One case 
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report suggested that ECMO had a minimal effect on removal 
of levetiracetam, which exhibits a small volume of distribu-
tion and less protein binding (107). When dose escalations are 
implemented, clinicians should anticipate the need for dose 
reductions at the time of ECMO discontinuation given the 
anticipated decrease in the volume of distribution (105).

USE OF SEDATIVES AND ANALGESICS 
DURING ECMO
Achieving desired levels of sedation in critically ill adults sup-
ported by ECMO is challenging. The Society of Critical Care 
Medicine’s guidelines for the management of pain, agita-
tion, sedation, delirium, immobility, and sleep disruption do 
not provide recommendations for patients on ECMO (108). 
According to ELSO, sedation should be titrated to the point of 
light anesthesia during cannulation and management for the 
first 12 to 24 hours (75). After 24 hours, in an effort to assess 
neurologic status, all sedation and opioids should be stopped. 
But no recommendations are made for long-term sedation. If 
mechanical ventilation is no longer needed after ECMO initia-
tion, sedation requirements may decrease.

Little is known regarding the optimal sedative or analgesic 
to use in patients. One study showed that only 3% of an in-
itial fentanyl dose was detectable 24 hours after initiation of 
ECMO (106). This finding is notable because fentanyl’s short 
half-life makes it the most frequently used sedative in the acute 
care setting. Given its high clearance rate in ECMO patients, 
however, it may not be the best choice, as much higher than 
normal doses are needed. On the other hand, the ECMO cir-
cuit does not substantially change concentrations of morphine 
(low lipophilicity and protein binding) at 24 hours. Therefore, 
it may be reasonable to use morphine if an opioid is needed for 
analgesia or sedation in ECMO patients. If renal failure is pre-
sent, hydromorphone may be preferable. Data are fairly lim-
ited regarding ketamine use for sedation of patients on ECMO. 
Farrokh et al (109) reported that ketamine may provide an ad-
equate level of sedation as an adjunctive therapy. Midazolam 
may be the preferred benzodiazepine despite the fact that se-
questration in the ECMO circuit leads to lower plasma lev-
els (110) because lorazepam causes propylene glycol toxicity. 
Propofol, which is highly lipophilic, is probably not a good 
choice, as some studies have reported that 98% of this drug 
is lost after 40–120 minutes of infusion in patients on ECMO 
(111, 112). Likewise, one study reported that nearly 93% of 
dexmedetomidine was lost at 24 hours, not surprising given its 
high lipophilicity and protein binding (113).

NEUROLOGIC MONITORING DURING ECMO
Bedside neuromonitoring has the potential to influence out-
come by enabling early detection and appropriate interven-
tion for a wide range of injuries. A recent prospective study of 
noninvasive neurologic monitoring (continuous EEG, somat-
osensory evoked potentials, transcranial Doppler [TCD], and 
neuroimaging) in patients on ECMO described the standard-
ized neuromonitoring protocol and its impact on diagnosis and 

prognostication for neurologic outcome (114). The standard-
ized noninvasive neuromonitoring during ECMO was feasible 
and revealed a high neurologic complication rate (114). How-
ever, more studies are needed to determine the specific utility 
of neuromonitoring in patients on ECMO. For noncomatose 
“stable” ECMO patients, bedside neurologic examination is 
fundamental to assessing acute neurologic changes that may 
occur. Some neuromonitoring tests relevant to ECMO include 
the following:

TCD Monitoring
TCD detects cerebral hemodynamic changes in real time and 
is the only method able to detect microembolic signals (MES) 
in real time. Pathologic findings of particular interest in the 
ECMO population include cerebral blood flow impairment, 
which potentially indicates progression to brain death, and 
microemboli, which lead to cerebral infarction (115). Cerebral 
infarctions are caused by microemboli in the arterial line dur-
ing cannulation and decannulation of peripheral arteries, or by 
thrombosis within the circuit or cannula in both venoarterial 
and venovenous ECMO (116). Previously published studies 
have not addressed ECMO circuit clots and their association 
with TCD signals, especially on the arterial side (117–119). 
Additionally, these studies did not report MRI scans or cog-
nitive outcomes, which may be more appropriate neurologic 
outcome measures (117–119). Data are limited on the fre-
quency and duration of TCD monitoring. Few pragmatic TCD 
monitoring protocols (e.g., every other day routinely or daily 
if MES-positive) have been reported (113–115). Therefore, re-
search is needed on TCD MES and their relation to brain in-
jury by MRI before recommendations can be made.

NIRS
Cerebral NIRS may be used to measure brain oxygen satu-
ration noninvasively and to monitor cerebral autoregulation 
continuously; however, the data are limited. NIRS has demon-
strated good agreement with a previously validated TCD-based 
method for assessing cerebral autoregulation in comatose 
patients (120). One small study of NIRS (bifrontal) during 
ECMO showed the potential to identify neurologic complica-
tions and possibly guide interventions (121).

Neuroimaging
A CT brain study (including portable CT) is recommended for 
ECMO patients who are comatose or exhibit focal neurologic 
deficits when assessed off sedation. A CT study can detect ce-
rebral ischemia in the posterior fossa with low sensitivity, and 
hemorrhage with high sensitivity. Obtaining MRI scans in 
ECMO patients can be quite challenging. However, a recent 
case series of patients who underwent MRI after ECMO sup-
port revealed diffuse cerebral microbleeds, similar to findings 
in some patients with LVADs (122, 123).

Biomarkers
The literature is sparse on the use of plasma biomarkers to pre-
dict neurologic outcome in adult patients with ECMO. One 
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biomarker that has been studied is neuron-specific enolase 
(NSE) (124). The clinical implication of NSE in ECMO is un-
clear as the NSE measurement is very sensitive to hemolysis, 
which is common in patients on ECMO (125). Biomarker 
studies in brain are limited because the complexity of the CNS 
circuit and its numerous functions make it impossible to pre-
dict outcomes based on only one or two proteins. Bembea et 
al (126) reported that combinations of brain-specific proteins 
associated with unfavorable outcome increased the sensitivity 
and specificity for outcome prediction.

Electrophysiology
Bilateral absence of the median somatosensory evoked poten-
tial N20 response and malignant EEG patterns in patients after 
cardiac arrest are reliable prognostic markers of poor func-
tional outcome (127–130). However, little is known about the 
reliability of the electrophysiologic tests in patients undergoing 
ECMO. Future studies on the use of continuous EEG in com-
atose patients supported by ECMO may be helpful in ascer-
taining the degree of brain injury and monitoring patients for 
seizures and brain function.

ICP Monitoring
ICP monitoring is rarely used in patients on ECMO owing to 
the risks associated anticoagulant cessation and ICP monitor 
placement. Hence, the literature in this area is sparse. In one 
case report, anticoagulation was maintained with nafamostat 
mesilate during ICP monitor placement, and cerebral perfu-
sion pressure was maintained at greater than 70 mm Hg based 
on the values obtained (130). However, placement of an ICP 
monitor should be considered cautiously, as no data currently 
suggest that ICP monitoring improves the outcome in patients 
with ECMO.

CONCLUSIONS
Our review of the current science and best practices for guid-
ing neurologic assessment and management of ECMO patients 
revealed little or low-quality evidence on this topic. With the 
overall increase in the use of ECMO, improving outcomes 
will likely depend on precisely defining the extent and types 
of neurologic complications. Only then can monitoring proto-
cols and interventions be designed that take into account the 
dynamic changes in cerebral circulation and the physiologic 
alterations that occur during ECMO.
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